
Cujo: Efficient Detection and Prevention of
Drive-by-Download Attacks

Konrad Rieck
Machine Learning Group

Technische Universität Berlin,
Germany

konrad.rieck@tu-
berlin.de

Tammo Krueger
Intelligent Data Analysis

Fraunhofer Institute FIRST,
Germany

tammo.krueger@tu-
berlin.de

Andreas Dewald
Laboratory for Dependable

Distributed Systems
University of Mannheim,

Germany
andreas.dewald@uni-

mannheim.de

ABSTRACT
The JavaScript language is a core component of active and
dynamic web content in the Internet today. Besides its great
success in enhancing web applications, however, JavaScript
provides the basis for so-called drive-by downloads—attacks
exploiting vulnerabilities in web browsers and their exten-
sions for unnoticeably downloading malicious software. Due
to the diversity and frequent use of obfuscation in these at-
tacks, static code analysis is largely ineffective in practice.
While dynamic analysis and honeypots provide means to
identify drive-by-download attacks, current approaches in-
duce a significant overhead which renders immediate pre-
vention of attacks intractable.

In this paper, we present Cujo, a system for automatic
detection and prevention of drive-by-download attacks. Em-
bedded in a web proxy, Cujo transparently inspects web
pages and blocks delivery of malicious JavaScript code. Static
and dynamic code features are extracted on-the-fly and anal-
ysed for malicious patterns using efficient techniques of ma-
chine learning. We demonstrate the efficacy of Cujo in
different experiments, where it detects 94% of the drive-
by downloads with few false alarms and a median run-time
of 500 ms per web page—a quality that, to the best of our
knowledge, has not been attained in previous work on de-
tection of drive-by-download attacks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.5.1 [Pattern Recognition]: Mod-
els—Statistical

Keywords
Drive-by downloads, web security, static code analysis, dy-
namic code analysis, machine learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION
The JavaScript language is a ubiquitous tool for provid-

ing active and dynamic content in the Internet. The vast
majority of web sites, including large social networks, such
as Facebook and Twitter, makes heavy use of JavaScript for
enhancing the appearance and functionality of their services.
In contrast to server-based scripting languages, JavaScript
code is executed in the web browser of the client and thus
provides means for directly interacting with the user and the
browser environment. Although the execution of JavaScript
code at the client is restricted by several security policies,
the interaction with the browser and its extensions alone
gives rise to a severe security threat.

JavaScript is increasingly used as basis for drive-by down-
loads, attacks exploiting vulnerabilities in web browsers and
their extensions for unnoticeably downloading malicious soft-
ware [see 15, 16]. These attacks take advantage of the tight
integration of JavaScript with the browser environment to
exploit different types of vulnerabilities and eventually as-
sume control of the web client. Due to the complexity of
browsers and their extensions, there exist numerous of these
vulnerabilities, ranging from insecure interfaces of third-
party extensions to buffer overflows and memory corruptions
[5, 7, 11]. Four of the top five most attacked vulnerabilities
observed by Symantec in 2009 have been such client-side
vulnerabilities involved in drive-by-download attacks [2].

As a consequence, detection of drive-by downloads has
gained a focus in security research. Two classes of defense
measures have been proposed to counteract this threat: First,
several security vendors have equipped their products with
rules and heuristics for identifying malicious code directly
at the client. This static code analysis, however, is largely
obstructed by the frequent use of obfuscation in drive-by
downloads. A second strain of research has thus studied de-
tection of drive-by downloads using dynamic analysis, for
example using code emulation [8, 17], sandboxing [4, 6, 16]
and client honeypots [14, 16, 21]. Although effective in de-
tecting attacks, these approaches suffer from either of two
shortcomings: Some approaches are limited to specific at-
tack types, such as heap spraying [e.g., 8, 17], whereas the
more general approaches [e.g., 4, 14] induce an overhead pro-
hibitive for preventing attacks at the client.

As a remedy, we present Cujo1, a system for detection
and prevention of drive-by-download attacks, which com-
bines advantages of static and dynamic analysis concepts.

1Cujo = “Classification of Unknown Javascript cOde”

Embedded in a web proxy, Cujo transparently inspects web
pages and blocks delivery of malicious JavaScript code to
the client. The analysis and detection methodology imple-
mented in this system rests on the following contributions
of this paper:

• Lightweight JavaScript analysis. We devise efficient
methods for static and dynamic analysis of JavaScript
code, which provide expressive analysis reports with
very small run-time overhead.

• Generic feature extraction. For the generic detection
of drive-by downloads, we introduce a mapping from
analysis reports to a vector space that is spanned by
short analysis patterns and independent of specific at-
tack characteristics.

• Learning-based detection. We apply techniques of ma-
chine learning for generating detection models for static
and dynamic analysis, which spares us from manually
crafting and updating detection rules as in current se-
curity products.

An empirical evaluation with 200,000 web pages and 600
real drive-by-download attacks demonstrates the efficacy of
this approach: Cujo detects 94% of the attacks with a false-
positive rate of 0.002%, corresponding to 2 false alarms in
100,000 visited web sites, and thus is almost on par with
offline analysis systems, such as Jsand [4]. In terms of run-
time, however, Cujo significantly surpasses these systems.
With caching enabled, Cujo provides a median run-time of
500 ms per web page, including downloading of web page
content and full analysis of JavaScript code. To the best of
our knowledge, Cujo is the first system capable of effectively
and efficiently blocking drive-by downloads in practice.

The rest of this paper is organized as follows: Cujo and its
detection methodology are introduced in Section 2 including
JavaScript analysis, feature extraction and learning-based
detection. Experiments and comparisons to related tech-
niques are presented in Section 3. Related work is discussed
in Section 4 and Section 5 concludes.

2. METHODOLOGY
Drive-by-download attacks can take almost arbitrary struc-

ture and form, depending on the exploited vulnerabilities as
well as the use of obfuscation. Efficient analysis and detec-
tion of these attacks is a challenging problem, which requires
careful balancing of detection and run-time performance.
We address this problem by applying lightweight static and
dynamic code analysis, thereby providing two complemen-
tary views on JavaScript code. To avoid manually crafting
detection rules for each of these views, we employ techniques
of machine learning, which enable generalizing from known
attacks and allow to automatically construct detection mod-
els. A schematic view of the resulting system is presented
in Figure 1.

Cujo is embedded in a web proxy and transparently in-
spects the communication between a web client and a web
service. Prior to delivery of web page data from the service
to the client, Cujo performs a series of analysis steps and
depending on their results blocks pages likely containing ma-
licious JavaScript code. To improve processing performance,
two analysis caches are employed: First, all incoming web
data is cached to reduce loading times and, second, analysis

Analysis component Caching capability Detection model

Internet

Forwarding
/ BlockingLoader

Web clientWeb services

Detection

Detection

Dynamic analysis

Static analysis

JavaScript
sandbox

Feature
extraction

JavaScript
lexer

Feature
extraction

Figure 1: Schematic depiction of Cujo.

results are cached, if all embedded and external code asso-
ciated with a web page has not changed within a limited
period of time.

2.1 JavaScript Analysis
As first analysis step, we aim at efficiently getting a com-

prehensive view on JavaScript code. To this end, we in-
spect all HTML and XML documents passing our system
for occurrences of JavaScript. For each requested document,
we extract all code blocks embedded using the HTML tag
script and contained in HTML event handlers, such as on-

load and onmouseover. Moreover, we recursively pre-load all
external code referenced in the document, including scripts,
frames and iframes, to obtain the complete code base of the
web page. All code blocks of a requested document are then
merged for further static and dynamic analysis.

As an example used throughout the following sections, we
consider the JavaScript code shown in Figure 2. The code is
obfuscated using a simple substitution cipher and contains
a routine for constructing a NOP sled, an array of NOP
instructions common in most memory corruption attacks.
Analysis reports for the static and dynamic analysis of this
code snippet are shown in Figure 3 and 4, respectively.

1 a = "";
2 b = "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>";
3 for (i = 0; i < b.length; i++) {
4 c = b.charCodeAt(i) - 3;
5 a += String.fromCharCode(c);
6 }
7 eval(a);

Figure 2: Obfuscated JavaScript code for generating
a NOP sled.

2.1.1 Static Analysis
Our static analysis relies on basic principles of compiler

design [3]: Before the source code of a program can be inter-
preted or compiled, it needs to be decomposed into lexical
tokens, which are then fed to the actual parser. The static

analysis component in Cujo takes advantage of this process
and efficiently extracts lexical tokens from the JavaScript
code of a web page using a customized Yacc grammar.

The lexical analysis closely follows the language specifi-
cation of JavaScript [1], where source code is sequentially
decomposed into keywords, punctuators, identifiers and lit-
erals. As the actual names of identifiers do not contribute to
the structure of code, we replace them by the generic token
ID. Similarly, we encode numerical literals by NUM and string
literals by STR. An example of this basic decomposition is
illustrated in the following

x = foo(y) + "bar"; −→ ID = ID (ID) + STR ;

where keywords and punctuators are represented by individ-
ual tokens, while identifiers and strings are subsumed by the
generic tokens ID and STR, respectively.

To further strengthen our static analysis for detection of
drive-by-download attacks, we make two refinements to the
lexical analysis. First, we additionally encode the length of
string literals as decimal logarithm. That is, STR.01 refers to
a string with up to 101 characters, STR.02 to a string with
up to 102 characters and so on. Second, we add EVAL as a
new keyword to the analysis. Both refinements target com-
mon constructs of drive-by-download attacks, which involve
string operations and calls to the eval() function.

Although obfuscation techniques may hide code from this
static analysis, several programming constructs and struc-
tures can be distinguished in terms of lexical tokens. As an
example, Figure 3 shows an analysis report of lexical tokens
for the example code given in Figure 2. While the actual
code for generating a NOP sled is hidden in the encrypted
string (line 2), several patterns indicative for obfuscation,
such as the decryption loop (line 3–5) and the call to EVAL

(line 7), are accessible to means of detection techniques

2.1.2 Dynamic Analysis
For dynamic analysis, we adopt an enhanced version of

ADSandbox, a lightweight JavaScript sandbox developed
by Dewald et al. [6]. The sandbox takes the code associ-
ated with a web page and executes it within the JavaScript
interpreter SpiderMonkey2. The interpreter operates in
a virtual browser environment and reports all operations
changing the state of this environment. Additionally, we
invoke all event handlers of the code to trigger functional-
ity dependent on external events. As result of this dynamic
analysis, the sandbox provides a report containing all mon-
itored operations of a given JavaScript code.

To emphasize behavior related to drive-by-download at-
tacks, we extend the dynamic code analysis with abstract
operations, which represent patterns of common attack ac-
tivity. These abstract operations are encoded as regular ex-
pressions and matched on-the-fly during the monitoring of
JavaScript code. Currently, Cujo supports two of these op-
erations: First, we indicate typical behavior of heap-spraying
attacks, such as excessive allocation of memory chunks by
appending the operation HEAP SPRAYING and, second, we mark
the use of browser functions inducing a re-evaluation of strings
by the interpreter using the operation PSEUDO-EVAL. While
both abstract operations are indicative for particular at-
tacks, they are not sufficient for detection alone and a full
inspection of behavior reports is required.

2SpiderMonkey, http://www.mozilla.org/js/SpiderMonkey

1 ID = STR.00 ;
2 ID = STR.02 ;
3 FOR (ID = NUM ; ID < ID . ID ; ID ++) {
4 ID = ID . ID (ID) - NUM ;
5 ID + = ID . ID (ID) ;
6 }
7 EVAL (ID) ;

Figure 3: Example of static analysis.

1 SET global.a TO ""
2 SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh
3 +{1ohqjwk?4333,{.@{>"
4 SET global.i TO "0"
5 CALL charCodeAt
6 SET global.c TO "120"
7 CALL fromCharCode
8 SET global.a TO "x"
9 ...

10 SET global.a TO "x=unescape("%u9090");
11 while(x.length<1000)x+=x;"
12 SET global.i TO "46"
13 CALL eval
14 CALL unescape
15 SET global.x TO "<90><90>"
16 SET global.x TO "<90><90><90><90>"
17 ...
18 SET global.x TO "<90> ... 1024 bytes ... <90>"

Figure 4: Example of dynamic analysis.

Although this lightweight analysis provides only a coarse
view on the behavior of JavaScript code in comparison to
offline analysis [e.g., 4, 14, 21], it enables accurate detection
of drive-by downloads with a median run-time of less than
400 ms per web page, as demonstrated in Section 3.4. As an
example, Figure 4 shows a behavior report for the code snip-
pet given in Figure 2. The first lines of the report cover the
decryption of the obfuscated string, which is finally revealed
in lines 10–11. Starting with the call to eval, this string is
evaluated by the interpreter and results in the construction
of a NOP sled with 1024 bytes in line 18.

2.2 Feature Extraction
In the second analysis step, we extract features from the

analysis reports of static and dynamic analysis, suitable for
application of detection methods. In contrast to previous
work, we propose a generic feature extraction, which is in-
dependent of particular attack characteristics and allows to
jointly process reports of static and dynamic analysis.

2.2.1 Q-gram Features
Our feature extraction builds on the concept of q-grams,

which has been widely studied in the field of intrusion detec-
tion [e.g., 10, 18, 22]. To unify the representation of static
and dynamic analysis, we first partition each report into a
sequence of words using white-space characters. We then
move a fixed-length window over each report and extract
subsequences of q words at each position, so-called q-grams.
The following example shows the extraction of q-grams with
q = 3 for two code snippets of static and dynamic analysis,
respectively,

ID = ID + NUM −→
˘

(ID = ID), (= ID +), (ID + NUM)
¯
,

SET a.b to "x" −→
˘

(SET a.b to), (a.b to "x")
¯
.

As a result of this extraction, each report is represented
by a set of q-grams, which reflect short patterns and provide
the basis for mapping analysis reports to a vector space.

Intuitively, we are interested in constructing a vector space,
where analysis reports sharing several q-grams lie close to
each other, while reports with dissimilar content are sepa-
rated by large distances. To establish such a mapping, we
associate each q-gram with one particular dimension in the
vector space. Formally, this vector space is defined using the
set S of all possible q-grams, where a corresponding mapping
function for a report x is given by

φ : x →
`
φs(x)

´
s∈S

with φs(x) =

(
1 if x contains the q-gram s,

0 otherwise.

The function φ maps a report x to the vector space R|S|

such that all dimensions associated with q-grams contained
in x are set to one and all other dimensions are zero. To
avoid an implicit bias on the length of reports, we normalize
φ(x) to one, that is, we set ||φ(x)|| = 1. As a result of
this normalization, a q-gram counts more in a report that
has fewer distinct q-grams. That is, changing a constant
amount of tokens in a report containing repetitive structure
has more impact on the vector than in an analysis report
comprising several different patterns.

2.2.2 Efficient Q-gram Representation
At the first glance, the mapping φ seems inappropriate

for efficient analysis: the set S covers all possible q-grams of
words and induces a vector space of very large dimension.
Fortunately, the number of q-grams contained in a report is
linear in its length. An analysis report x containing m words
comprises at most (m− q) different q-grams. Consequently,
only (m − q) dimensions are non-zero in the vector φ(x),
irrespective of the dimension of the vector space. It thus
suffices to only store the q-grams contained in each report x
for a sparse representation of the vector φ(x), for exam-
ple, using efficient data structures such as sorted arrays [19]
or Bloom filters [22]. As demonstrated in Section 3.4, this
sparse representation of feature vectors provides the basis
for very efficient feature extraction with median run-times
below 1 ms per analysis report.

2.3 Learning-based Detection
As final analysis step of Cujo, we present a learning-based

detection of drive-by-download attacks, which builds on the
vectorial representation of analysis reports. The application
of machine learning spares us from manually constructing
and updating detection rules for static and dynamic code
analysis, and thereby limits the delay to detection of novel
drive-by downloads.

2.3.1 Support Vector Machines
For automatically generating detection models from the

reports of attacks and benign JavaScript code, we apply the
technique of Support Vector Machines (SVM) [see 13, 20].
Given vectors of two classes as training data, an SVM deter-
mines a hyperplane that separates both classes with max-
imum margin. In our setting, one of these classes is asso-
ciated with analysis reports of drive-by downloads, whereas
the other class corresponds to reports of benign web pages.
An unknown report φ(x) is now classified by mapping it to

maximum marginw

φ(x)

benign code

drive-by downloads

Figure 5: Schematic vector representation of analy-
sis reports with maximum-margin hyperplane.

the vector space and checking if it falls on either the mali-
cious or benign side of the hyperplane. This learning-based
detection of drive-by downloads is illustrated in Figure 5.

Formally, the detection model of an SVM corresponds to
a vector w and bias b, specifying the direction and offset
of the hyperplane in the vector space. The corresponding
detection function f is given by

f(x) = 〈φ(x), w〉 + b =
X
s∈S

φs(x) · ws + b.

and returns the orientation of φ(x) with respect to the hy-
perplane. That is, f(x) > 0 indicates malicious activity in
the report x and f(x) ≤ 0 corresponds to benign data.

In contrast to many other learning techniques, SVMs pos-
sess the ability to compensate a certain amount of noise in
the labels of the training data—a crucial property for prac-
tical application of Cujo. This ability renders the learning
process robust to a minor amount of unknown attacks in the
benign portion of the training data and enables generating
accurate detection models, even if some of the web pages
labeled as benign data contain drive-by-download attacks.
Theory and further details on this ability of SVMs are dis-
cussed in [13, 20].

2.3.2 Efficient Classification of Q-grams
For efficiently computing f , we again exploit the sparse

representation of vectors induced by φ. Given a report x,
we know that only q-grams contained in x have non-zero
entries in φ(x), that is, all other dimensions in φ(x) are zero
and do not contribute to the computation of f(x). Hence,
we can simplify the detection function f as follows

f(x) =
X
s∈S

φs(x) · ws + b =
X

s in x

φs(x) · ws + b,

where we determine f(x) by simply looking up the values
ws for each q-gram contained in x. As a consequence, the
classification of a report can be carried out with linear time
complexity and a median run-time below 0.2 ms per report
(cf. Section 3.4). For learning the detection model of the
SVM we employ LibLinear [9], a fast SVM library which
enables us to train detection models from 100,000 reports
in 120 seconds for dynamic analysis and in 50 seconds for
static analysis.

2.3.3 Explanation
In practice, a detection systems must not only flag ma-

licious events but also provide insights into the detection
process, such that attack patterns and exploited vulnerabil-
ities can be inspected during operation. Fortunately, we can
adapt the detection function for explaining the decision pro-
cess of the SVM. During computation of f , we additionally
store the individual contribution φs(x) ·ws of each q-gram to

the final detection score f(x). If an explanation is requested,
we output the q-grams with largest contribution and thereby
present those analysis patterns that shifted the analysis re-
port x to the positive side of the hyperplane. We illustrate
this concept in Section 3.3, where we present explanations
for detections of drive-by-download attacks using reports of
static and dynamic analysis.

The learning-based detection completes the design of our
system Cujo. As illustrated in Figure 1, Cujo uses two
independent processing chains for static and dynamic code
analysis, where an alert is reported if one of the detection
models indicates a drive-by download.

This combined detection renders evasion of our system
difficult, as it requires the attacker to cloak his attacks from
both, static and dynamic analysis. While static analysis
alone can be thwarted through massive obfuscation, the hid-
den code needs to be decrypted during run-time which in
turn can be tracked by dynamic analysis. Similarly, if fewer
obfuscation is used and the attacker tries to spoil the sand-
box emulation, patterns of the respective code might be vis-
ible to static analysis. Although this argumentation does
not rule out evasion in general, it clearly shows the effort
necessary for evading our system.

3. EVALUATION
After presenting the detection methodology of Cujo, we

turn to an empirical evaluation of its performance. In par-
ticular, we conduct experiments to study the detection and
run-time performance in detail. Before presenting these ex-
periments, we introduce our data sets of drive-by-download
attacks and benign web pages.

3.1 Data Sets
We consider two data sets containing URLs of benign

web pages, Alexa-200k and Surfing, which are listed in Ta-
ble 1(a). The Alexa-200k data set corresponds to the 200,000
most visited web pages in the Internet as listed by Alexa3

and covers a wide range of JavaScript code, including sev-
eral search engines, social networks and on-line shops. The
Surfing data set comprises 20,283 URLs of web pages visited
during usual web surfing at our institute. The data has been
recorded over a period of 10 days and contains individual
sessions of five users. Both data sets have been sanitized by
scanning the web pages for drive-by downloads using com-
mon attack strings and the GoogleSafeBrowsing service.
While very few unknown attacks might still be present in the
data, we rely on the ability of the SVM learning algorithm
to compensate this inconsistency effectively.

(a) Benign data sets

Data set # URLs
Alexa-200k 200,000
Surfing 20,283

(b) Attack data sets

Data set # attacks
Spam Trap 256
SQL Injection 22
Malware Forum 201
Wepawet-new 46
Obfuscated 84

Table 1: Description of benign and attack data sets.
The attack data sets have been taken from [4].

3Alexa Top Sites, http://www.alexa.com/topsites

The attack data sets are listed in Table 1(b) and have
been mainly taken from Cova et al. [4]. In total, the at-
tack data sets comprise 609 samples containing several types
of drive-by-download attacks collected over a period of two
years. The attacks are organized according to their origin:
the Spam Trap set comprises attacks extracted from URLs
in spam messages, the SQL Injection set contains drive-by
downloads injected into benign web sites, the Malware Fo-
rum set covers attacks published in Internet forums, and the
Wepawet-new set contains malicious JavaScript code sub-
mitted to the Wepawet service4. A detailed description of
these classes is provided in [4]. Moreover, we provide the Ob-
fuscated set which contains 28 attacks from the other sets
additionally obfuscated using a popular JavaScript packer5.

3.2 Detection Performance
In our first experiment, we study the detection perfor-

mance of Cujo in terms of true-positive rate (ratio of de-
tected attacks) and false-positive rate (ratio of misclassified
benign web pages). As the learning-based detection imple-
mented in Cujo requires a set of known attacks and benign
data for training detection models, we conduct the following
experimental procedure: We randomly split all data sets into
a known partition (75%) and an unknown partition (25%).
The detection models and respective parameters, such as
the best length of q-grams, are determined on the known
partition, whereas the unknown partition is only used for
measuring the final detection performance. We repeat this
procedure 10 times and average results. The partitioning
ensures that reported results only refer to attacks unknown
during the learning phase of Cujo.

For comparing the performance of Cujo with state-of-
the-art methods, we also consider static detection meth-
ods, namely the anti-virus scanner ClamAv6 and the web
proxy of the security suite AntiVir7. As ClamAv does not
provide any proxy capabilities, we manually feed the down-
loaded web pages and respective JavaScript code to the scan-
ner. Moreover, we add results presented by Cova et al. [4]
for the offline analysis system Jsand to our evaluation.

3.2.1 True-positive Rates
Table 2 and 3 show the detection performance in terms

of true-positive rates for Cujo and the other methods. The
static and dynamic code analysis of Cujo alone attain a
true-positive rate of 90.2% and 86.0%, respectively. The
combination of both, however, allows to identify 94.4% of the
attacks, demonstrating the advantage of two complementary
views on JavaScript code.

A better performance is only achieved by Jsand which is
able to almost perfectly detect all attacks. However, Jsand
generally operates offline and spends considerably more time
for analysis of JavaScript code. The anti-virus tools, Cla-
mAv and AntiVir, achieve lower detection rates of 35%
and 70%, respectively, although both have been equipped
with up-to-date signatures. These results clearly confirm
the need for alternative detection techniques, as provided
by Cujo and Jsand, for successfully defending against the
threat of drive-by-download attacks.

4Wepawet Service, http://wepawet.cs.ucsb.edu
5JavaScript Compressor, http://dean.edwards.name/packer
6Clam AntiVirus, http://www.clamav.net/
7Avira AntiVir Premium, http://www.avira.com/

Attack data sets Cujo
static dynamic combined

Spam Trap 96.9% 98.1% 99.4%
SQL Injection 93.8% 88.3% 98.3%
Malware Forum 78.7% 71.2% 85.5%
Wepawet-new 86.3% 84.1% 94.8%
Obfuscated 100.0% 87.3% 100.0%
Average 90.2% 86.0% 94.4%

Table 2: True-positive rates of Cujo on the attack
data sets. Results have been averaged over 10 runs.

Attack data sets ClamAv AntiVir Jsand [4]
Spam Trap 41.0% 58.2% 99.7%
SQL Injection 18.2% 95.5% 100.0%
Malware Forum 45.3% 83.1% 99.6%
Wepawet-new 19.6% 93.5% —
Wepawet-old — — 100.0%
Obfuscated 4.8% 54.8% —
Average 35.0% 70.0% 99.8%

Table 3: True-positive rates of ClamAV, AntiVir
and Jsand on the attack data sets. The Wepawet-
new data set is a recent version of Wepawet-old.

3.2.2 False-positive Rates
Table 4 and 5 show the false-positive rates on the benign

data sets for all detection methods. Except for AntiVir
all methods attain reasonably low false-positive rates. The
combined analysis of Cujo yields a false-positive rate of
0.002%, corresponding to 2 false alarms in 100,000 visited
web sites, on the Alexa-200k data set. Moreover, Cujo does
not trigger any false alarms on the Surfing data set.

The high false-positive rate of AntiVir with 0.087% is
due to overly generic detection rules. The majority of false
alarms shows the label HTML/Redirector.X, indicating a po-
tential redirect, where the remaining alerts have generic la-
bels, such as HTML/Crypted.Gen and HTML/Downloader.Gen. We
carefully verified each of these alerts using a client-based
honeypot [21], but could not determine any malicious activ-
ity on the indicated web pages.

For the false alarms raised by Cujo we identify two main
causes: 0.001% of the web pages in the Alexa-200k data set
contain fully encrypted JavaScript code with no plain-text
operations except for unescape and eval. This drastic form
of obfuscation induces the false alarms of the static analy-
sis. The 0.001% false positives of the dynamic analysis result
from web pages redirecting error messages of JavaScript to
customized functions. Such redirection is frequently used
in drive-by downloads to hide errors during exploitation of
vulnerabilities, though it is applied in a benign context in
these 0.001% cases.

Overall, this experiment demonstrates the excellent detec-
tion performance of Cujo which identifies the vast majority
of drive-by downloads with very few false alarms—although
all attacks have been unknown to the system. Cujo thereby
significantly outperforms current anti-virus tools and is al-
most on par with the offline analysis system Jsand.

3.3 Explanations
After studying the detection accuracy of Cujo, we explore

its ability to equip alerts with explanations, which provides a
valuable instrument for analysis of detected attacks. In par-

Benign data sets Cujo
static dynamic combined

Alexa-200k 0.001% 0.001% 0.002%
Surfing 0.000% 0.000% 0.000%

Table 4: False-positive rates of Cujo on the benign
data sets. Results have been averaged over 10 runs.

Benign data sets ClamAv AntiVir Jsand [4]
Alexa-200k 0.000% 0.087% —
Surfing 0.000% 0.000% —
Cova et al. — — 0.013%

Table 5: False-positive rates of ClamAV, AntiVir
and Jsand on the benign data sets.

ticular, we present explanations for the detection techniques
detailed in Section 2.3 using q-grams of static and dynamic
analysis reports, where we select the best q for each analysis
type from the previous experiment.

As the first examples, we consider the q-grams (4-grams)
reported by Cujo for the static analysis of two detected
drive-by downloads. Figure 6(a) shows the top five q-grams
contributing to the detection of a heap-spraying attack. Some
patterns indicative for this attack type are clearly visible:
the first q-grams match a loop involving strings, while the
last q-grams reflect an empty try-catch block. Both pat-
terns are regularly seen in heap spraying, where the loop
performs the actual spraying and the try-catch block is used
for inhibiting exceptions during memory corruption.

Figure 6(b) shows the q-grams reported for the static de-
tection of an obfuscated drive-by download. At the first
glance, the top q-grams indicate only little malicious ac-
tivity. However, they reveal the presence of a XOR-based
decryption routine. Patterns of a loop, the XOR operator
and a call to the EVAL function here jointly contribute to the
detection of the obfuscation.

Contribution Features
φs(x) · ws s ∈ S (4-grams)

0.044 + STR.01 , STR.01
0.043 WHILE (ID .
0.042 = ID + ID
0.039 { TRY { VAR
0.039) { } }

(a) Top q-grams of a heap-spraying attack

Contribution Features
φs(x) · ws s ∈ S (4-grams)

0.124 = ID + ID
0.121 ; EVAL (ID
0.112 (ID) ^
0.104) ; } ;
0.096 STR.01 ; FOR (

(b) Top q-grams of an obfuscated attack

Figure 6: Examples for the explanation of static de-
tection. The five q-grams with highest contribution
to the detection are presented.

As examples for the dynamic analysis, Figure 7(a) shows
the top q-grams (3-grams) contributing to the dynamic de-
tection of a heap-spraying attack. Again the attack type is
clearly manifested: the first q-gram corresponds to the ab-
stract operation HEAP SPRAYING DETECTED which is triggered

Contribution Features
φs(x) · ws s ∈ S (3-grams)

0.190 HEAP SPRAYING DETECTED
0.121 CALL unescape SET
0.053 SET global.shellcode TO
0.053 unescape SET global.shellcode
0.036 TO "%90%90%90%90%90%90%90...

(a) Top q-grams of a heap-spraying attack

Contribution Features
φs(x) · ws s ∈ S (3-grams)

0.036 CALL unescape CALL
0.030 CALL fromCharCode CALL
0.025 CALL eval CONVERT
0.024 parseInt CALL fromCharCode
0.024 CALL createElement ("object")

(b) Top q-grams of an obfuscated attack

Figure 7: Examples for the explanation of dynamic
detection. The five q-grams with highest contribu-
tion to the detection are presented.

by our sandbox and indicates unusual memory activity. The
remaining q-grams reflect typical patterns of a shellcode con-
struction, including the unescaping of an encoded string and
a so-called NOP sled.

A further example for dynamic detection is presented in
Figure 7(b), which shows the top five q-grams of an obfus-
cated attack. Several calls of functions typical for obfus-
cation and corresponding substitution ciphers are visible,
including eval and unescape as well as the conversion func-
tions parseInt and fromCharCode used during decryption of
the attack. The last q-gram reflects the instantiation of an
object likely related to a vulnerability in a browser exten-
sion, though the actual details of this exploitation are not
covered by the first five q-grams.

It is important to note that these explanations are specific
to the detection of individual attacks and must not be inter-
preted as stand-alone detection rules. While we have only
shown the top q-grams for explanation, the underlying de-
tection models involve several million different q-grams and
thus realize a far more complex decision function.

3.4 Run-time Performance
Given the accurate detection of drive-by downloads, it re-

mains to show that Cujo provides sufficient run-time per-
formance for practical application. Hence, we first examine
the individual run-time of each system component individ-
ually and then study the overall processing time in a real
application setting with multiple users. All run-time exper-
iments are conducted on a system with an Intel Core 2 Duo
3 GHz processor and 4 Gigabytes of memory.

3.4.1 Run-time of Components
For the first analysis, we split the total run-time of Cujo

into the contributions of individual components as depicted
in Figure 1. For this, we add extra timing information to
the JavaScript analysis, the feature extraction and learning-
based detection. We then measure the exact contributions
to the total run-time on a sample of 10,000 URLs from the
Alexa-200k data set.

Figure 8 shows the median run-time per URL in mil-
liseconds, including loading of a web page, pre-loading of

 1697 ms

 681 ms

 372 ms

Loading

Pre−Loading

Analysis

Figure 8: Median run-time of Cujo per URL on
10,000 URLs from the Alexa-200k data set.

LX FE DE SE FE DE

10
−2

10
−1

10
0

10
1

10
2

10
3

Static Dynamic

R
un

−
tim

e
pe

r
U

R
L

(m
s)

Figure 9: Statistical breakdown of run-time for
JavaScript lexing (LX), sandbox emulation (SE),
feature extraction (FE) and detection (DE).

external JavaScript code and the actual analysis of Cujo.
Surprisingly, most of the time is spent for loading and pre-
loading of content, whereas only 14% is devoted to the anal-
ysis part of Cujo. As we will see in the following section,
we can greatly benefit from this imbalance by employing
regular caching techniques.

A detailed statistical breakdown of the analysis run-time
is presented in Figure 9, where the distributions of run-time
per URL are plotted for the static and dynamic analysis sep-
arately. Each distribution is displayed as a boxplot, in which
the box itself represents 50% of the data and the lower and
upper markers the minimum and maximum run-time per
URL. Additionally, the median is given as a middle line in
each box. Except for the sandbox emulation, all components
induce a very small run-time overhead ranging between 0.01
and 10 ms per URL. The sandbox analysis requires a me-
dian run-time of 370 ms per URL which is costly but still
significantly faster then related sandbox approaches.

3.4.2 Operating Run-time
In the last experiment, we evaluate the run-time of Cujo

in a real application setting. In particular, we deploy Cujo
as a web proxy and measure the time required per delivery
of a web page. To obtain reproducible measurements, we
use the Surfing data set as basis for this experiment, as it
contains multiple surfing sessions of five individual users.
For comparison, we also employ a regular web proxy, which
just forwards data to the users. As most of the total run-time
is spent for loading and pre-loading of resources, we enable
all caching capabilities in Cujo and the regular proxy.

Results for this experiment are shown in Figure 10, where
the distribution of run-time per URL is presented as a den-

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Run−time per URL (ms)

P
ro

ba
bi

lit
y

de
ns

ity

50% 75% 90% Regular proxy

Cujo proxy

Figure 10: Operating run-time of Cujo and a regular
web proxy on the Surfing data set.

sity plot. As expected the regular proxy ranges in the front
part of the plot with a median processing speed of roughly
150 ms per request. The run-time of Cujo is slightly shifted
to the right in comparison with the regular proxy. However,
the median run-time lies around 500 ms per web page, thus
inducing only a minimal delay at the web client. For ex-
ample, the median run-time for visiting web pages from the
domains google.com and yahoo.com using Cujo is 460 ms
and 266 ms, respectively.

In contrast to the regular proxy, the run-time distribu-
tion of Cujo shows an elongated tail, where few web pages
require more than 3,000 ms for processing due to excessive
analysis of JavaScript code. For instance, visiting pages from
facebook.com induces a median run-time of 1,560 ms. Still,
this experiment demonstrates that Cujo strongly benefits
from caching capabilities, such that only a minor delay can
be perceived at the web client.

4. RELATED WORK
Since the first discovery of drive-by downloads, analysis

and detection of this threat has been a vital topic in se-
curity research. One of the first studies on these attacks
and respective defenses has been conducted by Provos et al.
[15, 16]. The authors inspect web pages by monitoring a web
browser for anomalous activity in a virtual machine. This
setup allows for detecting a broad range of attacks. How-
ever, the analysis requires prohibitive run-time for on-line
application, as the virtual machine needs to be restored and
run for each web page individually.

A similar approach for identification of drive-by down-
loads is realized by client-based honeypots, such as Capture-
HPC [21] and PhoneyC [14]. While Capture-HPC also re-
lies on monitoring state changes in a virtual machine, Phon-
eyC emulates known vulnerabilities to capture attacks in a
lightweight manner. Although effective in identifying web
pages with malicious content, client-based honeypots are de-
signed for offline analysis and thus suffer from considerable
run-time overhead.

In contrast to these generic techniques, other approaches
focus on identifying particular attacks types, namely heap-
spraying attacks. For example, the system Nozzle proposed
by Ratanaworabhan et al. [17] intercepts the memory man-
agement of a browser for detecting valid x86 code in heap
objects. Similarly, Egele et al. [8] instrument SpiderMon-
key for scanning JavaScript strings for the presence of ex-
ecutable x86 code. Both systems provide an accurate and
efficient detection of heap-spraying attacks, yet they fail to
identify other common types of drive-by-download attacks,
for example, using insecure interfaces of browser extensions
for infection.

Closest to our work is the analysis system Jsand devel-
oped by Cova et al. [4] as part of the Wepawet service.
Jsand analyses JavaScript using the framework HtmlUnit
and the interpreter Rhino which enable the emulation of
an entire browser environment and monitoring of sophisti-
cated interaction with the DOM tree. The recorded behavior
is analysed using 10 features specific to drive-by-download
attacks for anomalous activity. Due to its public web in-
terface, Jsand is frequently used by security researchers to
study novel attacks and has proven to be a valuable analysis
instrument. However, its broad analysis of JavaScript code
is costly and induces a prohibitive average run-time of about
25 seconds per web page [cf. 4].

Finally, the system Noxes devised by Kirda et al. [12]
implements a web proxy for preventing cross-site scripting
attacks. Although not directly related to this work, Noxes
is a good example of how a proxy system can transparently
protect users from malicious web content. Obviously, this
approach targets only cross-site scripting attacks and does
not protect from other threats, such as drive-by downloads.

5. CONCLUSIONS
In this paper, we have presented Cujo, a system for effec-

tive and efficient prevention of drive-by downloads. As an
extension to a web proxy, Cujo transparently inspects web
pages using static and dynamic detection models and allows
for blocking malicious code prior to delivery to the client.
In an empirical evaluation with 200,000 web pages and 600
drive-by-download attacks, a prototype of this system sig-
nificantly outperforms current anti-virus products and en-
ables detecting 94% of the drive-by downloads with few false
alarms and a median run-time of 500 ms per web page—a
delay hardly perceived at the web client.

While the proposed system does not generally eliminate
the threat of drive-by downloads, it considerably raises the
bar for adversaries to infect client systems. To further harden
this defense, we currently investigate combining Cujo with
offline analysis and honeypot systems. For example, mali-
cious code detected using honeypots might be directly added
to the training data of Cujo for keeping detection models
up-to-date. Similarly, offline analysis might be applied for
inspecting and explaining detected attacks in practice.

Acknowledgements
The authors would like to thank Marco Cova for providing
the attack data sets as well as Martin Johns and Thorsten
Holz for fruitful discussions on malicious JavaScript code
and its detection.

References
[1] Standard ECMA-262: ECMAScript Language Specifi-

cation (JavaScript). 3rd Edition, ECMA International,
1999.

[2] Symantec Global Internet Security Threat Report:
Trends for 2009. Vol. XIV, Symantec, Inc., 2010.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, 1985.

[4] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious

JavaScript code. In Proc. of the International World
Wide Web Conference (WWW), 2010.

[5] M. Daniel, J. Honoroff, and C. Miller. Engineering heap
overflow exploits with JavaScript. In Proc. of USENIX
Workshop on Offensive Technologies (WOOT), 2008.

[6] A. Dewald, T. Holz, and F. Freiling. ADSandbox:
Sandboxing JavaScript to fight malicious websites.
In Proc. of ACM Symposium on Applied Computing
(SAC), 2010.

[7] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by
download attacks: Challenges and open problems. In
Proc. of Open Research Problems in Network Security
Workshop (iNetSec), 2009.

[8] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. De-
fending browsers against drive-by downloads: Mitigat-
ing heap-spraying code injection attacks. In Detection
of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2009.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[10] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A sense of self for Unix processes. In Proc. of IEEE
Symposium on Security and Privacy, pages 120–128,
Oakland, CA, USA, 1996.

[11] M. Johns. On JavaScript malware and related threats –
Web page based attacks revisited. Journal in Computer
Virology, 4(3):161–178, 2008.

[12] E. Kirda, C. Kruegel, G. Vigna, , and N. Jovanovic.
Noxes: A client-side solution for mitigating cross site
scripting attacks. In Proc. of ACM Symposium on Ap-
plied Computing (SAC), 2006.

[13] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and
B. Schölkopf. An introduction to kernel-based learn-
ing algorithms. IEEE Neural Networks, 12(2):181–201,
May 2001.

[14] J. Nazario. A virtual client honeypot. In Proc. of
USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET), 2009.

[15] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose.
All your iframes point to us. In Proc. of USENIX
Security Symposium, 2008.

[16] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser: Analysis
of web-based malware. In Proc. of USENIX Workshop
on Hot Topics in Understanding Botnets (HotBots),
2007.

[17] P. Ratanaworabhan, B. Livshits, and B. Zorn. Noz-
zle: A defense against heap-spraying code injection at-
tacks. Technical Report MSR-TR-2008-176, Microsoft
Research, 2008.

[18] K. Rieck and P. Laskov. Detecting unknown network at-
tacks using language models. In Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA),
pages 74–90, July 2006.

[19] K. Rieck and P. Laskov. Linear-time computation of
similarity measures for sequential data. Journal of Ma-
chine Learning Research, 9(Jan):23–48, 2008.

[20] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[21] C. Seifert and R. Steenson. Capture – honeypot client
(Capture-HPC). Victoria University of Wellington, NZ,
https://projects.honeynet.org/capture-hpc, 2006.

[22] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content
anomaly detector resistant to mimicry attack. In Recent
Advances in Intrusion Detection (RAID), pages 226–
248, 2006.

